Learn R Programming

dprop (version 0.1.0)

Lomax distribution: Compute the distributional properties of the Lomax distribution

Description

Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Lomax distribution.

Usage

d_lom(alpha, beta)

Value

d_lom gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Lomax distribution.

Arguments

alpha

The strictly positive parameter of the Lomax distribution (\(\alpha > 0\)).

beta

The strictly positive parameter of the Lomax distribution (\(\beta > 0\)).

Author

Muhammad Imran.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.

Details

The following is the probability density function of the Lomax distribution: $$ f(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-\alpha-1}, $$ where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\).

References

Abd-Elfattah, A. M., Alaboud, F. M., & Alharby, A. H. (2007). On sample size estimation for Lomax distribution. Australian Journal of Basic and Applied Sciences, 1(4), 373-378.

See Also

d_gamma

Examples

Run this code
d_lom(10,10)

Run the code above in your browser using DataLab